Webgames and Strategic Behavior: Recipes for Interactive Learning

Holt, C. “Webgames and Strategic Behavior: Recipes for Interactive Learning." Unpublished Manuscript (2002).  psu.edu 提供的 [PDF]

==notes by yinung==

這是一本電子書PDF, Charles A. Holt 寫的, 不知道在網路上還會放多久, 有興趣的快去下載…

Behavioral game theory: Experiments in strategic interaction

Camerer, Colin. Behavioral game theory: Experiments in strategic interaction. Princeton University Press, 2003.

==notes by yinung==

Camerer  (Caltech ) 的書

===有關 beauty contest===

在這個遊戲中,每一個人要猜一個介於 0 – 100 的數字。
誰猜的數字,最接近所有數字之「平均數 x p 」者獲勝

在文獻中 p = 2/3, 或 0.7  。

理論 (p.210), 以 p=2/3 例 (p=0.7 下之點為 100, 70, 49, 34, 24, 17,12,8, 5.76 , 4.03

如果每一個人的選擇, 是均等分配於 0-100, 則平均數 = 50

因此 level-1 thinking 者應該選 50*2/3 = 33 (one-step of reasoning)

因此 level-2 thinking 者應該選 33*2/3 = 22 (two-step of reasoning)

因此 level-3 thinking 者應該選 22*2/3 = 14.8

… 以此類推

選的數字 (67, 100]  (表示預期其它所有人皆選 100) violate first-order iterated dominance

選 (45,67] 符合 a player obeying one step of dominance, but not two.

選 (29,44] 符合 a player obeying two step of dominance, but not three.

Slonim (2001) 有 new player 進來的實驗:

引文
… It turns out that the experienced players use their experience wisely… they choose higher numbers when the new players arrive, and win almost all the time. But their edge disappears after one period.

References

最早的實驗 Nagel (1995, AER)

第一篇重覆實驗 Ho, Camerer and Weigelt (1998, AER)

很聰明地將 p<1, 再加上 p>1 的實驗進行比對, 難怪可以上 AER (當然不只如此)

文獻回顧類 Nagel (1999) (yinung: 在一本書中)

  • Ho, Teck-Hua, Colin Camerer, and Keith Weigelt. “Iterated dominance and iterated best response in experimental" p-beauty contests"." The American Economic Review 88.4 (1998): 947-969. caltech.edu 提供的 [PDF]
==